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1. INTRODUCTION 

Since it first appeared, many people have been interested in investing with sharia principles. In 

Indonesia, the number of Islamic capital market investors in 2018 was 44,536 investors, increasing to 

62,840 investors in 2019. In addition to the number of investors, the market capitalization of the 
Islamic stock index in Indonesia continues to increase until 2019, the market capitalization of the 

Islamic stock index has increased by 3.02%. 

Investment growth with sharia principles is developing in various countries, both with a 
Muslim majority and some non-Muslims(Boukhatem & Moussa, 2018; Tatiana, Igor, & Liliya, 2015). 

Many factors cause investment with sharia principles to be increasingly in demand, such as risk, 

profit-sharing rates, motivation to apply maqasid sharia, knowledge, and perceptions(Abdullah, 2015; 
Yesuf & Aassouli, 2020).In addition to the increasing growth of Muslims, there are also many 

findings stating that investment assets based on sharia principles provide a better diversification effect 

when compared to non-sharia investment(Hkiri, Hammoudeh, Aloui, & Yarovaya, 2017; Saiti, Bacha, 

& Masih, 2014). 
However, Islamic investment's advantages do not make Islamic investment instruments free 

from risk(Robiyanto, Santoso, & Ernayani, 2019). As for investing in stocks, there is a risk of 

changing asset prices(Huber, Palan, & Zeisberger, 2019). Price changes can occur due to an increase 
or decrease in prices due to the real-time sale and purchase of stock instruments every second in the 

capital market, where the capital market experiences fluctuating price changes(Abraham, Cortina, & 

Schmukler, 2021; Wahyudi & Sani, 2014). The stock market is an excellent place to invest in the long 

term, but it cannot be promising in the short term because it must anticipate daily, weekly, and 
monthly movements of stock prices(Yildiz, Karan, & Pirgaip, 2017). Volatility is a calculation that 

determines the rise and fall of a stock's price.Daily, weekly, and monthly volatility can be a reference 

source in predicting future stock price movements (Atkins, Niranjan, & Gerding, 2018; Audrino, 
Sigrist, & Ballinari, 2020). Volatility can create a risk where market value is susceptible to stock 

prices, interest rates, and exchange rates(Byström, 2014; Mahapatra & Bhaduri, 2019). 
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 Along with the large number of investors transacting on Islamic stocks, 
stock prices' movement becomes more volatile. The purpose of this 
research is to examine the behavior of volatility patterns in shares 
incorporated in the Jakarta Islamic Index using the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) model. This 
study uses daily data from six stocks in the Jakarta Islamic Index during 
the period of January, 2009, to December, 2020. Data volatility is seen 
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ASII shares. Nevertheless, if going to get a high level of return can 
invest in UNTR shares. For securities, analysis can use the GARCH 
model tested to predict volatility in the Jakarta Islamic Index. 
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Figure 1. Growth of Sharia Stock Market Market Capitalization (in Billion Rupiahs) 

(Source: Financial Services Authority, 2019) 

 

Investors need to analyze stock price movements' volatility to get high stock returns(Tan & Tas, 

2019). High data volatility can lead to the emergence of current period errors affected by previous 

period errors(Sugiharti, Esquivias, & Setyorani, 2020). If stock prices have high volatility and are not 

handled properly, it will be difficult to do calculations because the high error value is 
heteroscedasticity(Hong & Lee, 2017; Natarajan, Singh, & Priya, 2014). 

The simple method cannot detect volatility because it has heteroscedasticity, so it requires a 

model that can consider these conditions with the conditional heteroscedastic model(Ismail, Audu, & 
Tumala, 2016; Livingston, Yao, & Zhou, 2019).The primary purpose of building a model is to make 

good predictions for the next volatility movement to help determine the portfolio allocation efficiently 

and risk management accurately(Chandrinos & Lagaros, 2018; Nayak, Pai, & Pai, 2016). 
Research related to the Islamic stock index's volatility has been previously conducted by Gold, 

Wang, Cao, & Huang (2017) in Canada's capital markets, Nasr, Lux, Ajmi, & Gupta (2016)on the 

Islamic stock index in America, Oberholzer & Venter (2015)also examined the volatility of the stock 

market in London. In addition to the Americas and Europe, research related to stock volatility has also 
been studied by Abdulkarim, Akinlaso, Hamid, & Ali (2020)on Islamic stocks and crude oil prices in 

Africa,Ng, Chin, and Chong (2020)investigate the realized volatility transmission between the 

Malaysian Islamic market and various global sectoral Islamic stock markets, Lin (2018) on the stock 
index on the Shanghai stock exchange,Jebran, Chen, & Zubair (2017)on the Islamic and conventional 

indexes on the Pakistan capital market, and Birău & Trivedi (2015)on the Indian stock exchange. Not 

only that, but research on stock volatility has also been carried out on regional indexes, as conducted 

by Erdogan, Gedikli, & Çevik (2020)investigates volatility spillover effects between foreign exchange 
markets and Islamic stock markets in three major emerging countries, namely India, Malaysia, and 

Turkey, Salisu & Gupta (2019)on local indexes of BRICS(Brazil, Russia, India, China, and South 

Africa)countries, and Rizvi & Arshad(2017)on the global Islamic and conventional index. 
No one studies the effects of volatility found on the Jakarta Islamic Index (JII) in Indonesia 

from the research that has been studied.  One model that can overcome data volatility is using 

Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH). ARCH-GARCH can detect the effect of variance and squared error 

from its data series. ARCH-GARCH is a continuation of the Integrated Moving Average (ARIMA) 

autoregressive forecasting model where the model still contains heteroscedasticity, which is usually 

found in time-series data. The selection of the best model in ARCH-GARCH refers to the 
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significance, the smallest error, and deviation, high correlation and fulfills the assumptions of 
normality and homoscedasticity to forecast the data value for the next period. Previous research has 

proven to solve problems in time series data in volatility and predict stock price movements using 

ARCH-GARCH (Abdulkarim et al., 2020; Erdogan et al., 2020; Gold et al., 2017; Jebran, Chen, & 

Tauni, 2017; Nasr et al., 2016; Ng et al., 2020; Salisu & Gupta, 2019). Considering that the market 
capitalization in JII and the number of sharia investors continue to increase, it is essential to study the 

patterns of volatility in the index. This study analyzes volatility and predicts stocks on the Jakarta 

Islamic Index (JII) using the GARCH model. This research can contribute, first, considerations for 
companies to anticipate existing changes. Second, predict stock movements with the right level of 

accuracy. Third, it helps investors analyze stock price movements' volatility to get the expected stock 

returns. Fourth, references for stakeholders in policymaking. 

2. LITERATURE REVIEW 

Changes in the price of individual shares in the market occur due to changes in supply and 

demand. Changes in supply and demand can occur due to rational or irrational factors. Rational 
factors include company performance, interest rates, inflation rates, growth rates, exchange rates, or 

other countries' stock price indexes, while irrational factors include rumors in the market or price 

play(Bertasiute, Massaro, & Weber, 2020; Tuyon & Ahmad, 2016). An increase or decrease in stock 
prices always makes mistakes, and usually, if the price continues to rise, there will be a decrease in 

price in the next period.  

Overreaction occurs because of being too optimistic or pessimistic in responding to an event 

that affects the company's future performance(Parveen, Wajid, Abdul, & Jamil, 2020). Therefore, 
investors must be careful of stock price movements that rise too quickly or fall too quickly, or the 

term volatility of stock prices occurs. Investors' ability to predict the presence or absence of stock 

price volatility will affect the returns that investors will get.A highly volatile market will make it 
difficult for companies to raise their capital in the capital market. With the emergence of JII, it should 

be possible for investors to get alternative stock investments with a relatively small risk of uncertainty 

due to lower volatility compared to conventional stocks. 
Research related to volatility has been conducted several times by various researchers globally, 

including research conducted byErdogan et al. (2020), examining the volatility spillover effect 

between the sharia stock market and the foreign exchange market found that the volatility spillover 

effect was only found in the Turkish sharia stock market, not with the Malaysian and Indian stock 
markets which were the object of research. 

In addition to research conducted on the stock market in Europe and Asia, studies related to 

stock volatility on the Islamic index are also performed on the American continent.Nasr et al. 
(2016)found that because basically some of the Dow Jones Islamic Stock Market Index stocks are also 

in the conventional index, the Dow Jones Islamic Stock Market Index's risk and volatility 

characteristics are not much different from conventional ones. The Dow Jones Islamic Stock Market 

Index is in line with the results of researchers' testing using the Fractionally Integrated Generalized 
Autoregressive Conditional Heteroscedasticity (FIGARCH) model and the Fractionally Integrated 

Time-Varying Generalized Autoregressive Conditional Heteroscedasticity (FITVGARCH). 

Abdulkarim et al. (2020), by using the Maximal Overlap Discrete Wavelet Transform 
(MODWT), Continuous Wavelet Transform (CWT), and multivariate Generalized Autoregressive 

Conditional Heteroscedasticity Dynamic Conditional Correlation (GARCH-DCC), found that almost 

all sharia indexes in the African continent have the advantage of diversification due to the low 
volatility of changes in crude oil prices.Meanwhile, Rizvi and Arshad (2017)conducted a study on 

global sharia, and conventional indices found that the sharia stock index tends not to be too affected 

by the global economic crisis, so the researchers concluded that the low systematic risk of sharia-

based equity was able to offer better portfolio diversification opportunities. 
Research related to volatility modeling has also been carried out on the stock market in China. 

Lin (2018)found that the SSE Composite Index has a time-varying and clustering pattern. This result 

is in line with discovering the Autoregressive Conditional Heteroscedasticity (ARCH) and 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) effects on the index. Saiti et al. 

(2014)used the Dynamic Multivariate Generalized Autoregressive Conditional Heteroscedasticity 
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method. Researchers found that shares based on sharia principles have no leverage effect due to the 
upper limit of the amount of debt-based assets issued by the sharia supervisory board. 

Jebran et al. (2017), using several methods to examine the transmission of volatility and the 

relationship between Islamic indices and conventional indices, using the Vector Error Correction 

Model (VECM), researchers found that there were significant short and long term relationships 
between the Islamic index and conventional indices, meanwhile using the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) and Exponential Generalized Autoregressive Conditional 

Heteroscedasticity (EGARCH) models found asymmetric bidirectional volatility spillover between 
sharia index and conventional index. 

Babu and Reddy (2015)used partition interpolation based on the Auto-Regressive Integrated 

Moving Average - Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-GARCH) 
model to predict stocks in India. The results of these models can forecast well, unlike the traditional 

ARIMA model. Hkiri et al. (2017)found that when the global economic crisis, assets with Islamic 

principles have better performance than conventional assets, this study found a time-varying pattern 

and testing using the GARCH model. 
Birău and Trivedi (2015)estimated India's National Stock Exchange's long-term volatility using 

the GARCH model. The results showed that the CNX-100 index is part of the Indian NSE has a more 

energetic volatility pattern and a positive market trend after 2013. Vipul (2016)forecast volatility in 
various stock indices in the world using multiple conditional variance models. The results show that 

the Exponential Weighted Moving Average (EWMA) model has a superior performance in predicting 

volatility than the EGARCH and RGARCH models. 

3. METHOD 

This study uses the Jakarta Islamic Index 30 (JII 30) daily stock data from 2009 to 2020. The 
selection of JII 30 as the object of observation follows the sharia principles that underlie the index 

formation and the index's liquidity status. Six companies that never left the Sharia index 30 during the 

observation year, namely two companies engaged in services, namely PT. Telekomunikasi Indonesia, 
Tbk (TLKM) in the infrastructure, utilities, transportation sectors, and PT. United Tractors Indonesia, 

Tbk (UNTR) in trade, service, and investment sectors, one company in the primary and chemical 

industry sectors, namely PT. Semen Indonesia, Tbk(SMGR), Furthermore, three companies engaged 

in manufacturing consisting of one company in the different industry sectors, namely PT. Astra 
Internasional, Tbk (ASII), two companies in the consumer goods industry sector, namely PT. Kalbe 

Farma, Tbk (KLBF), and PT. Unilever Indonesia, Tbk (UNVR). 

Financial data that are time series have the characteristics of extended memory, leptokurtic, 
volatility clustering(Boako, Agyemang-Badu, & Frimpong, 2015). The use of the Ordinary Least 

Square (OLS) model on data that has volatile characteristics will cause the model not to be able to 

explain conditions well because volatility in the data indicates changes in the mean and variance, 
while the OLS model requires that the mean and variation must be constant (Enders, 2004). 

To overcome this, the model that can capture dynamic data is the Autoregressive Conditional 

Heteroscedasticity (ARCH) (Engle, 1982). Then by Bollerslev, the model was re-developed into 

Generated Autoregressive Conditional Heteroscedasticity (GARCH). This study analyzes volatility 
and predicts stocks on the JII 30 using the GARCH model.  The GARCH model is a model that can 

function for forecasting using variance data in the previous data (t-1). Before forecasting using the 

variance in period t-1, researchers conduct trials first by modeling the Box-Jenkins ARIMA modeling. 
The aim is to determine an excellent statistical relationship between the predicted variables with the 

variable's historical value to forecast using the model. The Box-Jenkins ARIMA model is a model that 

can predict using original t-1 period data(Box, Jenkins, Reinsel, & Ljung, 2015). 
The GARCH model has several assumptions that must be met. Namely, the data must be 

stationary, and the data has a heteroscedasticity effect. To do a stationary test, the writer uses the Unit 

Root Test.  The best model has been found, and the data contains heteroscedasticity through the 

ARCH-LM test, then the trial continues with the ARCH-GARCH model.Where ℎ𝑡 is variance at time 

t, ξ is constant variable, 𝒆𝒕−m
𝟐  is volatility in the previous period (ARCH term), ∝0 , ∝1 ,…,∝m  is 

estimated coefficient of order m, k is constant variance, ht−r  is variance in the previous period 

(GARCH term), δ1, δ2,…,δr is is estimated coefficient of order r. 
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ℎ𝑡 = ζ +∝0 𝒆𝒕
𝟐 + ∝𝟏 𝒆𝒕−𝟏

𝟐 +∝𝟐 𝒆𝒕−𝟐
𝟐 + ⋯ +∝m 𝒆𝒕−m

𝟐   ;   ARCH(m) 

 

ℎ𝑡 = k + δ1ht−1 + δ2ht−2 + ⋯ + δrht−r +∝𝟏 𝜺𝒕−𝟏
𝟐 +∝𝟐 𝜺𝒕−𝟐

𝟐 + ⋯ +∝𝐦 𝜺𝒕−𝐦
𝟐  ;GARCH(r,m) 

 

4. RESULTS AND DISCUSSION 

Figure 2 shows the daily price movement and the regular return movement of the observed 
object. Based on this picture, each of the stock returns and stocks that were the object of observation 

has a high volatility level In general, the six stock prices' movement shows varying volatility from 

time to time (time-varying volatility) and tends to cluster in specific periods. The phenomenon of 
volatility that is not constant over time may have a heteroscedasticity effect. Also, volatility has 

autocorrelation, which means the current volatility depends on past volatility. 
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Figure 2. Stock Price and Return 

 

Table 1 below describes the descriptive statistic where the standard deviation value of TLKM 

has the lowest value of 0.01851, which means it shows the smallest risk of volatility of the other five 
stocks. Meanwhile, KLBF stock return has the greatest return with a value of 0.19807 in line with a 

considerable risk of reaching 0.022362. 

Table 1. Descriptive statistics 

 TLKM UNTR SMGR ASII KLBF UNVR 

Mean 0.000275 0.000557 0.000364 0.000537 0.000976 0.000508 

Maximum 0.128749 0.164303 0.182322 0.133531 0.19807 0.177169 

Minimum -0.09097 -0.10661 -0.12953 -0.12165 -0.18527 -0.12891 

Std. Dev 0.01851 0.025087 0.023980 0.022245 0.022362 0.019371 

 

Table 2 describes the unit root test results using the Augmented Dickey-Fuller test, where the 

statistical value of the Augmented Dickey-Fuller test is smaller than the critical value of 5%, which 
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means that all data is stationary.After ensuring that the data is stationary, the next step is to determine 

the best ARIMA model. Table 3 shows the best ARIMA model (p, d, q) using the smallest Akaike 

Info Criterion (AIC) value criteria, and the probability value of each variable is significant. 

Table 2. Unit root test 

Company 
Level 

ADF test statistic Prob. 

TLKM -31.60511 0.0000 

UNTR -41.05039 0.0000 

SMGR -55.57732 0.0001 

ASII -41.27728 0.0000 

KLBF -57.00215 0.0001 

UNVR -42.89779 0.0000 

 

Table 3. Best ARIMA models (p, d, q) 

Company ARIMA (p,d,q) Akaike Info Criterion Prob. 

TLKM 
ARIMA (2,0,2) -5.155265 (0,0) 

UNTR 
ARIMA (1,0,1) -4.535121 (0,0) 

SMGR 
ARIMA (1,0,1) -4.622726 (0,0) 

ASII 
ARIMA (2,0,2) -4.777887 (0,0) 

KLBF 
ARIMA (1,0,1) -4.763456 (0,0) 

UNVR 
ARIMA (1,0,1) -5.061921 (0,0) 

 

Table 4 is a heteroscedasticity test using the ARCH-LM test where the test results show the 

data contains heteroscedasticity because the probability value is below a significant value of 5% so 

that it can continue with the ARCH-GARCH Model. 

 

Table 4. ARCH-LM Heteroscedasticity Test 

Company Prob. 

TLKM 
0.0000 

UNTR 
0.0000 

SMGR 
0.0000 

ASII 
0.0000 

KLBF 0.0000 

UNVR 
0.0000 

 

After getting the best GARCH model, then make a mathematical equation from the model. All 

models provide information about market prices affecting the stock price index's volatility along with 

the previous day's standard deviation value. The stock price model of each stock index is as follows. 
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𝑇𝐿𝐾𝑀ℎ𝑡 = 2.26E-5 + 0.115741𝜀𝑡−12 + 0.816961h𝑡−1 

UNTRh𝑡 = 3.42E-5 + 0.076578𝜀𝑡−12 + 0.867553h𝑡−1 

SMGR𝑡 = 3.10E-5 + 0.203152 𝜀𝑡−12 + 0.841426h𝑡−1 

ASII𝑡 = 8.40E-6 + 0.052885 𝜀𝑡−12 + 0.928813h𝑡−1 

KLBF𝑡 = 6.06E-6 +0.202381 𝜀𝑡−12 − 0.151409𝜀𝑡−22 + 0.936691h𝑡−1 

UNVR𝑡 = 1.82E-5 + 0.112475 𝜀𝑡−12 + 0.838337h𝑡−1 

Table 5. Best GARCH Model (p,q) 

Company  (p,q) C ARCH (t-1) ARCH (t-2) GARCH (t-1) Prob AIC 

TLKM (1,1) 0.0000226 0.115741 - 0.816961 0 -5.280545 

UNTR (1,1) 0.0000342 0.076578 - 0.867553 0 -4.623550 

SMGR (1,1) 0.0000310 0.103152 - 0.841426 0 -4.792180 

ASII (1,1) 0.00000840 0.052885 - 0.928813 0 -4.21477 

KLBF (2,1) 0.00000606 0.202381 -0.151409 0.936691 0 -4.972909 

UNVR (1,1) 0.0000182 0.112475 - 0.838337 0 -5.257114 

 

After obtaining the best GARCH model, a diagnostic model is carried out, aiming to check 

whether the model still has heteroscedasticity. Table 6 shows the diagnostic model results where all 

data are free from heteroscedasticity problems (greater than 5%) when using the GARCH model. 

 

Table 6. Diagnostic Model 

Company Heteroscedasticity 

TLKM 0.0853 

UNTR 0.7313 

SMGR 0.2869 

ASII 0.2927 

KLBF 0.7955 

UNVR 0.0941 

 

After obtaining the best ARCH-GARCH model, the next step is to forecast stock return 

volatility using the selected ARCH-GARCH model. Forecasting results are converted to monthly for 

60 months for simpler results. The forecast results are shown in Figure 3, and Figure 4 shows that 

stock returns' volatility has two phases, namely the stable phase and the surge phase. The stable phase 

indicates the absence of volatility in the company's stock return, while the spike phase indicates 

volatility in its stock return. 
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Figure 3. Prediction of the Volatility of Stock Returns of Each Company 

 

 
Figure 4. Prediction of the Volatility of Stock Returns of Each Company 

 

The forecast results show that stock returns from UNTR will have the most volatile stock 

returns among the five other stocks. These results can be seen from forecasting data distribution, 

where UNVR has the greatest value, namely, 0.1289%. Not only that, the difference in the forecasting 
value of the UNTR return volatility between the maximum value and the minimum or the most 

considerable range is UNTR with 0.7176%.Meanwhile, the stock with the most stable return volatility 

experience is ASII, with a forecast data distribution of 0.0605%. The difference in value between the 

maximum and minimum return volatility forecasting value or the range is 0.3159%. 
Research using the GARCH model to model volatility patterns on stocks is in line with 

previous studies on the same problem as the research conducted by Birău and Trivedi (2015). The 

results show that stocks on the Jakarta Islamic Index have characteristics such as volatility clustering 
and leptokurtosis. Volatility clustering occurs when large changes follow significant changes in stock 

returns in stock returns, and small changes follow small changes in stock returns in stock returns. 

Leptokurtosis means that the distribution of the stock returns is not normal. In other words, 

leptokurtosis indicates the possibility that there is a high value for the extreme value rather than the 
prediction in a series.This characteristic is very reasonable to be found in its financial time series data. 

This characteristic was also found in some previous studies, such as the research conducted byBoako, 

Agyemang-Badu, and Frimpong (2015). From testing the GARCH model, it was found that almost all 
the value of stock volatility in the Jakarta Islamic Index was influenced by the error and volatility of 

the return one day before. The Islamic stock index is beautiful because the market capital index is still 

tiny, so there is plenty of room for listed stocks to enter the JII index. Public awareness of Islamic 
stocks is increasing, so that many investors are starting to be interested in halal or haram to collect 

halal shares. The prospect of the Islamic stock index is attractive for investors to observe because the 

stocks listed in the Jakarta Islamic Index have performed well. Also, issuers listed on the sharia index 

-0,40%

-0,30%

-0,20%

-0,10%

0,00%

0,10%

0,20%

0,30%

0,40%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

SMGR

TLKM

UNTR

-0,50%

-0,40%

-0,30%

-0,20%

-0,10%

0,00%

0,10%

0,20%

0,30%

0,40%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

ASII

KLBF

UNVR



36                                                     Majalah Ilmiah Bijak  Vol 18, No.1, Maret 2021, pp. 27-39 

E ISSN 2621-749X 

Muhammad Faturahman Aria Bisma (Jakarta Islamic Index Stock...) 

are issuers that have healthy debt. Shares included in the Islamic index have a ratio between total debt 
based on interest compared to total assets of not more than 45% and a ratio between total interest 

income and non-halal income compared to the total income of not more than 10%. Investors can carry 

out accumulated purchases for stocks in the JII index if they want to invest for the long term, but if 

investors want to invest for the short and medium-term, investors should wait and see first because 
there is still market sentiment. 

Only the KLBF shares found that the value of stock volatility was affected by an risk two days 

back and the return volatility one day earlier. The KLBF shares are because the robust model for 
modeling KLBF stock volatility is the GARCH model (2,1). The diagnostic test results show that the 

GARCH model tested passed the ARCH-LM test and serial correlation test, indicating that the 

GARCH model was correctly determined. This result is in line with the same research model by 
Erdogan et al. (2020). 

 

5. CONCLUSION 

This study aims to analyze the volatility of stock returns on the Jakarta Islamic Index 30. A 
total of six companies were analyzed. The six companies are PT. Telekomunikasi Indonesia, Tbk 

(TLKM), PT. United Tractors Indonesia, Tbk (UNTR), PT. Semen Indonesia, Tbk (SMGR), PT. 

Astra Internasional, Tbk (ASII), PT. Kalbe Farma, Tbk (KLBF), and PT. Unilever Indonesia, Tbk 
(UNVR). The results show that the volatility of ASII, SMGR, TLKM, UNTR, and UNVR stocks is 

influenced by risk and return volatility on the previous day. Meanwhile, KLBF shares are influenced 

by the risk on the previous two days and the return volatility on the previous day. If we look at the 
descriptive statistic table, KLBF shares have the highest risk of volatility.  

The results show that in the next 60 months, UNVR shares have the most considerable stock 

return volatility value, while ASII shares have the lowest stock return volatility value. These results 

indicate that investors who are risk-takers can enter UNTR shares into their portfolio. Meanwhile, 
investors who are risk averters can enter ASII shares into their portfolios. The high volatility in 

UNVR is unique because the nature of UNVR shares is engaged in the consumer sector, a relatively 

stable sector. However, UNVR's share ownership based on the public expose shows that 85% of the 
majority of shares are owned by foreign investors where the portfolio is the Indonesian capital market 

and global so that there can be a change in position if the Indonesian stock exchange is volatile. 

Researchers recommend that investors and securities analysis assess and predict the volatility of the 

Jakarta Islamic Index 30. So it can calculate the right level of risk if investors want to form an optimal 
portfolio containing shares from the Jakarta Islamic Index. 
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