Association Rules Mining for Designing Product Bundling Strategy (Study Case at a Cafe in Jakarta)

Milqi Miftahul Jannah, Yelita Anggiane Iskandar, Ferani Eva Zulvia

Abstract


Cafe X is a modern and prominent coffee shop in town that sells specialty beverage products with a total of 73 variations. Sales transactions that occurred in March 2021 at that Cafe reached an average of 300 times per day. All this time, the transaction data is only used to calculate inventory replenishment and to observe sales profits whereas it can actually be utilized to reveal information related to customer behavior in buying products by finding the association or pattern between product sales. The purpose of this study is to obtain association models between items that can be used as a base to arrange recommendations for selling beverage products at Cafe X using a data mining method, namely the association rules with the Apriori algorithm. The transaction data specified for data processing are payment transactions of a total of 3,100 data records. From the analysis results, it is known that there are 8 product association rules that meet the minimum support of 0.01 and the minimum confidence of 0.5, which means that these rules can be used as an alternative basis for determining business strategy at Cafe X. Based on the association information between products, the customer relationship management (CRM) strategy that can be applied at Cafe X is the promotion strategy of product bundling. From a number of recommended bundled products, it is found that there are opportunities to increase sales for four products, they are MD001, TH002, LB001, and TU001.

Keywords


Data Mining; Association Rules; Apriori Algorithm; Customer Relationship Management; Product Bundling;

Full Text:

PDF

References


Sub Direktorat Statistik Tanaman Perkebunan, Statistik Kopi Indonesia 2019. Badan Pusat Statistik Indonesia, 2019.

United States Of Department, “Coffee: World Markets and Trade,” Foreign Agric. Serv. Off. Glob. Anal., 2019, [Online]. Available: http://www.fas.usda.gov/htp/coffee/2009/December_2009/2009_coffee_december.pdf.

Kementrian Perindustrian Republik Indonesia, Peluang Usaha IKM Kopi. Jakarta: Kementerian Perindustrian Republik Indonesia, 2017.

Toffin, “Riset Toffin,” tofin.id, 2020. https://toffin.id/riset-toffin/#:~:text=Hasil riset Toffin bersama Majalah,2016 yang hanya sekitar 1.000. (accessed Apr. 22, 2021).

Gobiz, “5 Tips dan Strategi Meningkatkan Penjualan Usaha Anda,” 2021. https://gobiz.co.id/pusat-pengetahuan/strategi-penjualan/.

A. Carissa, “Penerapan Customer Relationship Management (CRM) Sebagai Upaya untuk Meningkatkan Loyalitas pelanggan (Studi Kasus pada Bandung Sport Distro Malang),” J. Adm. Bisnis S1 Univ. Brawijaya, vol. 15, no. 1, p. 84471, 2014.

F. Buttle and S. Maklan, Customer Relationship Management, 3rd ed. 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN: Routledge, 2015.

M. K. Kang, “Market Basket Analysis: Identify the changing trends of market data,” Procedia Comput., pp. 78–85, 2016.

M. SyahruRomadhon and A. Kodar, “Implementasi Metode Market Basket Analysis (Mba) Menggunakan Algoritma Apriori Dalam Transaksi Penjualan (Studi Kasus: Kafe Ruang Temu),” J. SAINTEKOM, vol. 10, no. 2, p. 138, 2020, doi: 10.33020/saintekom.v10i2.137.

M. F. Mulya, N. Rismawati, and A. R. Rizky, “Analisis dan Implementasi Data Mining Menggunakan Algoritma Apriori untuk Meningkatkan Penjualan pada Kantin Universitas Tanri Abeng,” Fakt. Exacta, vol. 12, no. 3, pp. 210–218, 2019, doi: 10.30998/faktorexacta.v12i3.4541.

Informatika, “Data Mining Untuk Permasalahan Bisnis dan Keuangan,” FTI UNSERA, 2017. http://informatika.fti-unsera.id.

F. Nurchalifatun, “Penerapan Metode Asosiasi Data Mining Menggunakan Algortima Apriori untuk Mengetahui Kombinasi antar Itemset pada Pondok Kopi,” Data Min., 2017.

D. Anderson, “How Customized Data Mining Benefits Your Business,” 2018. https://www.dataversity.net/ (accessed Jul. 29, 2021).

N. Wardani, Penerapan Data Mining Dalam Analytic CRM, no. May. 2020.

S. Li, “A Gentle Introduction on Market Basket Analysis — Association Rules,” towardsdatascience, 2017. https://towardsdatascience.com/ (accessed Jul. 20, 2021).

Bavarsad, “Studying the Factors Affecting the Customer Relations Management (CRM) in Maroon Petrochemical Company,” Interdiscip. J. Contemp. Res. Bus., 2013.

C. Zhang and S. Zhang, Association Rule Mining: Models and Algorithms. Berlin: Springer, 2002.

A. Maheshwari, Data Analytics. Chennai: McGraw Hill Education (India) Private Limited, 2017.




DOI: https://doi.org/10.31334/logistik.v7i2.3466

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Logistik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

____________________________________________

Jurnal Logistik Indonesia

ISSN 2579-8952 (media cetak), 2621-6442 (media online)

Email : [email protected]/[email protected]

Website: http://ojs.stiami.ac.id/index.php/logistik

INDEKS BY: